x^2+(32/12)x-64=0

Simple and best practice solution for x^2+(32/12)x-64=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+(32/12)x-64=0 equation:



x^2+(32/12)x-64=0
Domain of the equation: 12)x!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x^2+(+32/12)x-64=0
We multiply parentheses
x^2+32x^2-64=0
We add all the numbers together, and all the variables
33x^2-64=0
a = 33; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·33·(-64)
Δ = 8448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8448}=\sqrt{256*33}=\sqrt{256}*\sqrt{33}=16\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{33}}{2*33}=\frac{0-16\sqrt{33}}{66} =-\frac{16\sqrt{33}}{66} =-\frac{8\sqrt{33}}{33} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{33}}{2*33}=\frac{0+16\sqrt{33}}{66} =\frac{16\sqrt{33}}{66} =\frac{8\sqrt{33}}{33} $

See similar equations:

| F(x)=5x4-3x2 | | 10x-3x-9+3-x=51/3+1 | | (1/7)^x+3=1 | | -u+159=26 | | 3(5x-5)-8=15x-23 | | -3/7v=9 | | -6(2n+4)-3=-6n+9 | | 9y-4=-8(y-8) | | 6x-3=6x+6 | | (x)=2x^2+5x-9 | | (3.2m+7.45)/3.1=2.06 | | -8–5j=-4j–1 | | 2q–1=3 | | 14y=6y+72 | | y=6(8)^2 | | 2n2-n-1=0 | | (X/7)+2=x/7 | | 42=3u-12 | | x+7/3-3x-7/4=x-1/2 | | x-9.1=3.4 | | 26=-4u+7u+35 | | 24x+99=45x+89 | | y=8^2+13(-3)+8 | | x+7/3+3x-7/4=x-1/2 | | 5×g=230 | | -5(-4a-6)+a=-4+4a | | (5+3q=)(2) | | -1=2x-16-5x | | 11=2x-13 | | 1/2y+33=-16 | | 2w+3w+21=-29 | | (x-5)/5+(x+2)/6=52 |

Equations solver categories